安徽大學(xué)胡海波教授課題組近期在鋅基儲能器件領(lǐng)域再獲系列進(jìn)展,相關(guān)研究成果分別以:“Developing Inverse-opal-structured Charge-deficient Co9S8@nitrogen-doped-carbon to Catalytically Enable High Energy and High Power for the Two-electron Transfer I+/I− electrode”、“Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite-Free Zn Deposition on Metallic Zinc Anodes ”和“Wood-Like Low-Tortuosity Thick Electrode for Micro-Redoxcapacitor with Ultrahigh Areal Energy Density and Steady Power Output”為題在材料學(xué)科頂級期刊《Advanced Materials》《Advanced Energy Materials》和《Advanced Functional Materials》上發(fā)表。安徽大學(xué)材料科學(xué)與工程學(xué)院碩士研究生胡濤、程自海和張家寶分別為各自論文第一作者,安徽大學(xué)為第一通訊單位。
圖1. a) Co9S8@NC催化劑結(jié)構(gòu)示意圖; b) Co9S8@NC缺電荷特點展示及其吸附機(jī)理; c)與傳統(tǒng)單電子轉(zhuǎn)移實現(xiàn)的能量密度對比; d)催化劑Co9S8@NC實現(xiàn)活化能降低.
水系鋅碘電池被認(rèn)為是一種前景廣闊、高安全性的新型儲能技術(shù)。然而I+/I0/I-兩電子連級反應(yīng)具有較差的動力學(xué)穩(wěn)定性,嚴(yán)重制約了其電壓和能量密度的進(jìn)一步提升。
鑒于此,胡海波教授和合作者,設(shè)計開發(fā)了一種具有反蛋白石結(jié)構(gòu)的Co9S8@NC復(fù)合催化劑,以其缺電荷態(tài)的特點調(diào)控對碘物種的吸附作用,從而提高I+/I0/I-兩電子連級反應(yīng)動力學(xué)。同時,其高比表面積,減輕了與碘氧化還原過程相關(guān)的能量壁壘。這些結(jié)構(gòu)特征又為調(diào)節(jié)碘氧化還原過程的動力學(xué)提供了有效手段。該工作為開發(fā)基于多重電子轉(zhuǎn)移反應(yīng)的、兼具高能量密度和高功率密度碘電極化學(xué)提供了模型系統(tǒng)和理論框架(Advanced Materials, 2024, DOI: 10.1002/adma.202312246)。
圖2. 在a)純ZnSO4電解質(zhì)和b)含有微量茶堿添加劑的優(yōu)化混合電解質(zhì)中,鋅陽極表面的鍍鋅行為示意圖.
鋅金屬陽極(metallic zinc anodes, MZAs)上的枝晶增生嚴(yán)重削弱了水系鋅金屬電池(aqueous zinc metal batteries, AZMBs)的能效。通過MZA表面織構(gòu)化暴露具有高熱力學(xué)穩(wěn)定性的(002)Zn晶面,從而控制鋅的定向生長是一種廣泛報道的無枝晶鋅沉積策略。然而,通過鋅金屬表面織構(gòu)工程影響鋅沉積形態(tài)的根本因素還沒有得到很好的理解。
基于此,胡海波教授與合作者研究發(fā)現(xiàn),通過在ZnSO4電解質(zhì)中引入微量茶堿,織構(gòu)化暴露(101)Zn 晶面在促進(jìn)無枝晶鋅沉積方面同樣有效。實驗結(jié)果和理論計算表明:茶堿衍生的陽離子由于擁有較高的吸附能而傾向于吸附在(002)Zn晶面上,從而使得(002)Zn晶面獲得與Zn2+離子更強(qiáng)的親和力而加速生長。這有助于(101)Zn晶面的織構(gòu)暴露,進(jìn)而實現(xiàn)MZAs表面鋅的有序取向生長,從而使其在高達(dá)40%的放電深度下電沉積/溶解循環(huán)能夠超過650小時,顯著提高了AZMBs的能效(1000次循環(huán)后容量保持率為76.7%,不含添加劑的電池容量保持率為36.3%)。該工作為MZAs的表面晶體取向和Zn沉積形態(tài)之間的科學(xué)聯(lián)系提供了新的見解(Advanced Energy Materials, 2024, DOI: 10.1002/aenm.202304003)。
圖3.a) 具有密堆積結(jié)構(gòu)的傳統(tǒng)MXene厚電極設(shè)計與b)具有類木質(zhì)微結(jié)構(gòu)的MXene/AgNWs混合厚電極設(shè)計在結(jié)構(gòu)和功能上的優(yōu)勢比較;c) 類木MXene/AgNWs混合厚電極的制備過程和微型氧化還原電容器的組裝示意圖。
傳統(tǒng)MXene基密堆疊厚電極具有高迂曲度微結(jié)構(gòu),存在電荷傳輸遲緩和活性物質(zhì)利用率低的問題,因此組裝后的微型超級電容器(MSC)面積能量密度提升有限。
基于此,胡海波教授與合作者通過定向冷凍干燥技術(shù),在MXene/Ag-nanowires (AgNWs)混合氣凝膠電極中實現(xiàn)了類木微結(jié)構(gòu)的復(fù)制。由于三維垂直排列的均勻微通道可以作為離子在整個電極基體中的高速傳輸通道,厚度達(dá)2000 μm的復(fù)合氣凝膠電極的Cl-離子擴(kuò)散系數(shù)比同質(zhì)量MXene負(fù)載的密堆疊薄膜電極高出50倍。此外,電極基體中均勻分布的AgNWs作為滲流網(wǎng)絡(luò),可促進(jìn)垂直排列的松散MXene薄片之間的水平電子傳輸,同時通過相轉(zhuǎn)化反應(yīng)(Ag⇔AgCl)可逆地捕獲/釋放Cl-離子,從而提高復(fù)合氣凝膠電極的電荷存儲容量。因此,與鋅陽極耦合組裝的微型氧化還原電容器能以更穩(wěn)定的方式提供近300 µWh cm-2的高面積能量密度。該工作所展示的具有低迂曲度類木微結(jié)構(gòu)混合厚電極的構(gòu)筑策略,有望成為解決傳統(tǒng) MSC性能瓶頸的有效途徑(Advanced Functional Materials, 2024, DOI: 10.1002/adfm.202310775)。
評論