這種新型弱磁能收集器結(jié)構(gòu),可使物聯(lián)網(wǎng)傳感器免于更換、維修電池等種種人工繁瑣操作,實現(xiàn)弱磁條件下的“自發(fā)電”,其輸出功率比傳統(tǒng)磁能收集結(jié)構(gòu)提高約120%。
我國“雙碳”戰(zhàn)略倡導(dǎo)綠色、環(huán)保、低碳的生活方式,這有賴于綠色能源技術(shù)的不斷發(fā)展創(chuàng)新。在我國大力發(fā)展可再生能源的當(dāng)下,磁能等現(xiàn)實環(huán)境中微能源的回收再利用引起眾多研究者的關(guān)注。
哈爾濱工程大學(xué)水聲工程學(xué)院與創(chuàng)新發(fā)展基地“海洋磁傳感器和探測”團隊青年教師、副教授儲昭強研究設(shè)計了一種新型弱磁能收集器結(jié)構(gòu),可使物聯(lián)網(wǎng)傳感器免于更換、維修電池等種種人工繁瑣操作,實現(xiàn)弱磁條件下的“自發(fā)電”,其輸出功率比傳統(tǒng)磁能收集結(jié)構(gòu)提高約120%。近日,該研究學(xué)術(shù)論文“兩端夾持磁—力—電俘能器件中顯著增強的弱磁能量回收性能”在能源材料領(lǐng)域國際著名期刊《先進能源材料》在線發(fā)表。
回收再利用環(huán)境中的微能源
“萬物互聯(lián)”是打造智能世界的一個重要引擎,也催生了物聯(lián)網(wǎng)技術(shù)的快速發(fā)展。目前,發(fā)展物聯(lián)網(wǎng)的一大挑戰(zhàn)是尋找傳感通信節(jié)點的自供能技術(shù),以支持大規(guī)模、分布式傳感網(wǎng)絡(luò)的構(gòu)建。
針對這一技術(shù)挑戰(zhàn),我國多個領(lǐng)域都在積極籌劃以圖破解之道。2021年國家重點研發(fā)計劃“智能傳感器”重點專項針對人體多參量生物傳感器在無線場景下自供能入網(wǎng)難題,提出研究從人體獲取能量的自供能技術(shù);2022年國家重點研發(fā)計劃“智能傳感器”重點專項針對配用電網(wǎng)絡(luò)狀態(tài)感知分布式傳感器的供能入網(wǎng)難題,提出了磁電耦合自供能磁場敏感元件及傳感器的項目指南;2022年國家自然科學(xué)基金也將攻關(guān)航天用微型壓電振動俘能技術(shù)納入指南范圍。
可以說發(fā)展分布式能源獲取技術(shù),實現(xiàn)環(huán)境中微能源的回收再利用具有重要價值,也是響應(yīng)國家節(jié)能減排戰(zhàn)略,助力碳達峰的有效舉措。
對于環(huán)境微能源的回收利用,在振動能、輻射能和近場電磁能等眾多可收集能源中,電力電纜、工業(yè)機械和家用電器等產(chǎn)生的雜散磁能由于其頻率固定和分布廣泛,比風(fēng)能等低頻能量獲取效率更高,一直受到研究人員的關(guān)注。特別是在建設(shè)智能電網(wǎng)的背景下,對輸電線路狀態(tài)參數(shù)的在線監(jiān)測與故障診斷迫切需要從架空電纜中俘獲能量而構(gòu)建可持續(xù)的自供能傳感網(wǎng)絡(luò)。
就如小說《三體》中描繪的那個美麗新世界,杯子無需電源、電池,可以自加熱,空中的飛車也不用電池,卻能不停地飛,永遠也不會沒有電,都是由于電源用微波或其他形式的電磁震蕩來發(fā)電而形成的無線供電場。這種技術(shù)其實就是目前用于手機無線充電的技術(shù)。最初,人們也把目光投向了這種傳統(tǒng)線圈式感應(yīng)取電裝置。但是這種技術(shù)有著體積大、安裝不便和難以耐受短時大電流沖擊等突出問題。
因而,人們開始研究一種由磁能轉(zhuǎn)化為機械能再轉(zhuǎn)化為電能(MME)的俘能裝置,這一技術(shù)有望成為下一代低頻磁場能量收集的新選擇。
儲昭強介紹,這種新型俘能器件是利用磁扭矩效應(yīng)以及磁滯伸縮效應(yīng),再利用壓電效應(yīng)實現(xiàn)機械能與電能之間的轉(zhuǎn)換,其優(yōu)勢在于無需線圈式感應(yīng)取電裝置所需的閉合磁路,且可以實現(xiàn)更高效率的能量轉(zhuǎn)換和對強電流脈沖的更高耐受度。
適用于低場能量收集的新方法
儲昭強從2016年開始接觸振動和磁場的能量收集技術(shù)。從2016年到2021年,一直致力于基于傳統(tǒng)懸臂梁式諧振結(jié)構(gòu)的材料和器件方面的研究。這是一種一端固定而另一端自由,且在自由端附加質(zhì)量塊(磁鐵)的能量收集器結(jié)構(gòu)。這種結(jié)構(gòu)由自由端磁性質(zhì)量塊提供驅(qū)動扭矩,同時貢獻了超過90%的等效質(zhì)量。在這種情況下,如果要維持諧振器50赫茲(Hz)的諧振頻率不變,則難以單純通過增加自由端磁鐵的質(zhì)量來增強磁—力耦合性能。也正是這個原因,目前大多數(shù)研究的懸臂梁式磁—機—電器件僅局限于對強磁場,即大于5奧斯特(Oe)磁場的能量收集。世界衛(wèi)生組織指出公眾可接觸的50/60Hz交變磁場安全閾值為1Oe,而且環(huán)境中雜散磁場的大小一般也低于此參考值。因此也有必要探索適應(yīng)于低場能量收集的新原理和新方法。
基于“磁—機—電俘能器件如何降低自由端磁性質(zhì)量塊的等效質(zhì)量”這一思考,儲昭強大膽創(chuàng)新,提出了一種兩端夾持梁的設(shè)計思路。這種設(shè)計使磁—機—電俘能器件的兩端都固定起來,采用一種二階振動模式,降低了中心磁性質(zhì)量塊的動能,從而減小了其對諧振系統(tǒng)等效質(zhì)量的貢獻,在增加磁鐵體積的情況下大大提升了系統(tǒng)在50Hz弱場條件下的輸出性能。
實驗表明,在弱磁環(huán)境的相同激勵條件下,該能量收集器在同等單位時間內(nèi)可輸出的電能是傳統(tǒng)懸臂梁式結(jié)構(gòu)的2倍多,完全可以使沒有安裝電池的傳感器正常工作并與手機終端進行通信連接。
儲昭強表示:“在科研工作中,起到關(guān)鍵作用的往往就是一個小小的,甚至不起眼的設(shè)計方法。但是這個方法的來源一定是基于長期的研究和思考。”
未來或用于水下小型仿生平臺
“目前,這種對于磁場的能量收集技術(shù)在應(yīng)用上還有一定的局限性,科學(xué)總是解決了一個問題就會帶來很多新問題的過程。”儲昭強向科技日報記者表示,未來,他將主要考慮進一步優(yōu)化兩端夾持磁—機—電俘能器件在材料方面、幾何方面的參數(shù)設(shè)計,進一步實現(xiàn)增加適應(yīng)的磁場變化范圍和微型化的集成,為研制自供能磁場敏感元件,電網(wǎng)輸變電智能感知與配用電網(wǎng)絡(luò)拓撲關(guān)系識別等應(yīng)用提供關(guān)鍵技術(shù)。
儲昭強同時表示,團隊將結(jié)合哈爾濱工程大學(xué)船??蒲刑厣珒?yōu)勢,深入研究水下小型仿生平臺如水下機器魚、無人水下航行器等基于超聲和磁場的無線供能技術(shù),這不僅能解決小型仿生平臺等能源“取”的問題,同時解決能源“供”的問題。
儲昭強所在的哈爾濱工程大學(xué)水聲學(xué)院與創(chuàng)新發(fā)展基地“海洋磁傳感器和探測”團隊于2017年成立并不斷發(fā)展壯大,團隊瞄準(zhǔn)水下目標(biāo)多傳感探測的基礎(chǔ)理論、關(guān)鍵技術(shù)和工程應(yīng)用,全面開展了基礎(chǔ)磁材料、磁傳感器研制、水下信息感知和處理等技術(shù)研究。(記者李麗云 霍 萍)
評論